Modeling galaxy redshift space distortions for WFIRST

Nick Hand

UC Berkeley March 3, 2016

with Uros Seljak, Yu Feng, and Grigor Aslanyan

Galaxy clustering with WFIRST

the ultimate goal: measure expansion history and growth rate with sub-percent level precision

BAO as standard ruler

redshift space distortions

Anderson et al. 2014

Planck Collaboration XIII 2015

Uncertainties in the forecasting of RSD constraints

- small scales contaminated by non-linear effects, but have greater statistical precision
- theoretical systematics implicitly forecasted through value of k_{max}

source: Weinberg et al. 2013

RSD constraints have great potential

- need full P(k) analysis to fully capture information
- factor of ~3 improvement in dark energy FOM when using full P(k) shape measurements (assuming GR)
- full shape analysis provides information on neutrino masses and expansion through AP test

source: Wang et al. 2010

A new scheme for modeling RSD

- 1. Approximate N-body solver with halo formation model that is both sufficiently fast and accurate enough to extract galaxy statistics
- 2. Physical model for galaxy-halo connection that is general enough to avoid the many unknown aspects of galaxy formation
- 3. Simultaneously sample the posterior distribution and emulate the slow evaluation of the data likelihood

FastPM: fast simulations of halos

- an approximate particle mesh N-body solver that enforces the correct large-scale linear growth at each time step
- written from scratch to exhibit strong-scaling nearly linear scaling with the number of CPUs allows for fast simulations
- benchmarks with 10 time steps produce halo catalogs that are very close to the exact (N-body) solution
- simulations led by Yu Feng at UC Berkeley, with publication coming soon

find the project on github: https://github.com/rainwoodman/fastpm

FastPM: fast simulations of halos

Feng et al. 2016 (in prep.)

preferred configuration takes \sim 100 CPU-hours -> typically O(1 min)

FastPM: benchmarks for halo catalogs

Feng et al. 2016 (in prep.)

the galaxy - halo connection: HOD formalism

- flexible enough to immunize constraints against galaxy formation uncertainties:
 - 1. velocity bias for centrals/satellites
 - 2. central galaxy incompleteness
 - 3. satellite profile uncertainties
 - 4. assembly bias —> decorated HODs (see Hearin et al. 2015, 1512.03050)
 - 5. others?
- populate FastPM halo catalogs using as many features as needed using Halotools software (led by Andrew Hearin)
- simplified HOD-modeling already successful in extending RSD constraints to smaller scales: Reid et al. 2014, Guo et al. 2014.

from simulation to clustering observables

- fast power spectrum measurements via FFTs via nbodykit
- population + power spectrum steps take O(seconds)

to do:

tailor to WFIRST volume, HOD masses, observational effects, etc

Combining the pieces with Cosmo++ emulator

- a combined sampler and emulator for data likelihood using training set of exact results produced during sampling procedure
- robust error control of emulation errors that are propagated to posterior probability distribution
- exact solution computed if error model predicts an unacceptable emulation error
- "learn-as-you-go": updates error model and training set given new, exact solutions

Aslanyan et al. 2015, 1506.01079 https://github.com/aslanyan/cosmopp

Combining the pieces with Cosmo++ emulator

Aslanyan et al. 2015

led by Grigor Aslanyan at UC Berkeley

applied to CMB likelihoods in 1506.01079

Conclusions

- RSD analyses can provide powerful constraints on dark energy and General Relativity tests with WFIRST, if theoretical uncertainties can be controlled
- key challenge: accurate modeling of non-linear effects and galaxy formation physics on small-scales
- developing a simulation-based RSD model that is both computationally tractable and sufficiently accurate
 - 1. FastPM simulations produce halo catalogs in O(minutes)
 - HOD population and power spectrum estimation in O(seconds)
 - 3. Combine these steps in learn-as-you-go emulator to simultaneously sample the posterior and emulate the non-linear galaxy power spectrum

FastPM: benchmarks for halo catalogs

Feng et al. 2016 (in prep.)

 \sim 0.18 dex scatter in halo mass corresponds to: stochasticity \sim 0.10, 0.18, 0.22 in 10^{12} , 10^{13} , 10^{14} Msun/h halos

Modeling assembly bias with decorated HODs

the current status of growth rate results

Gil-Marin et al. 2015

best uncertainty on $f\sigma_8(z=0.57)$ is ~8%, fitting to $k_{max} = 0.24 h/Mpc$

BAO systematics are well-controlled

simulations indicate reconstruction eliminates systematics to the \sim 0.1% level

source: Mehta et al. 2011

nbodykit software tools

- python tools for N-body simulations + LSS surveys
- parallelized with MPI and designed to run on super-computers
- available tools/features:
 - periodic and windowed power spectra
 - correlation functions
 - FOF halo finder
 - sub-halo finder
 - running above algorithms in parallel across nodes in batch mode

available at github.com/bccp/nbodykit